Baby Cry Sound Detection: A Comparison of Hand Crafted Features and Deep Learning Approach

نویسندگان

  • Rafael Torres
  • Daniele Battaglino
  • Ludovick Lepauloux
چکیده

Baby cry sound detection allows parents to be automatically alerted when their baby is crying. Current solutions in home environment ask for a client-server architecture where an end-node device streams the audio to a centralized server in charge of the detection. Even providing the best performances, these solutions raise power consumption and privacy issues. For these reasons, interest has recently grown in the community for methods which can run locally on batterypowered devices. This work presents a new set of features tailored to baby cry sound recognition, called hand crafted baby cry (HCBC) features. The proposed method is compared with a baseline using mel-frequency cepstrum coefficients (MFCCs) and a state-of-the-art convolutional neural network (CNN) system. HCBC features result to be on par with CNN, while requiring less computation effort and memory space at the cost of being application specific.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Automatic Lung Cancer Detection and Diagnosis Using Hand Crafted and Deep Learning Features

This paper presents a lung nodule detection and classification system which utilizes a combination of hand crafted and deep learning features. Hand crafted features were obtained from modified methods of bag of frequencies, and taxonomic indices. We included a robust radius estimation algorithm that resulted in an average error of 1.29 pixels. Hand crafted features were obtained from 3D low dos...

متن کامل

A fully automated approach for baby cry signal segmentation and boundary detection of expiratory and inspiratory episodes

The detection of cry sounds is generally an important pre-processing step for various applications involving cry analysis such as diagnostic systems, electronic monitoring systems, emotion detection, and robotics for baby caregivers. Given its complexity, an automatic cry segmentation system is a rather challenging topic. In this paper, a framework for automatic cry sound segmentation for appli...

متن کامل

The Automated Learning of Deep Features for Breast Mass Classification from Mammograms

The classification of breast masses from mammograms into benign or malignant has been commonly addressed with machine learning classifiers that use as input a large set of hand-crafted features, usually based on general geometrical and texture information. In this paper, we propose a novel deep learning method that automatically learns features based directly on the optmisation of breast mass c...

متن کامل

Coreferent Mention Detection using Deep Learning

A mention may or may not be coreferred elsewhere in the document. Identifying those mentions that are corefered (called coreferents) is an important step in many NLP tasks, like coreference resolution. To classify a mention as singleton or coreferent using just one sentence is a challenging problem, but previous work suggests that there are cues in a sentence which can be used to predict if a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017